

В

ChIP-seq	Cell type	# of unique reads	# of peaks
H3K27me3	ES-WT	30867008	21826
H3K27me3	ES-WT	65907766	33272
H3K27me3	ES-Y641F	55966605	36525
H3K27me3	ES-Y641F	55184754	31433
H3K27me3	24h diff-WT	41951103	26752
H3K27me3	24h diff-WT	98202471	34378
H3K27me3	EB8-WT	50798469	17309
H3K27me2	ES-WT	41803365	30722
H3K27me2	ES-WT	59372399	32834
H3K27me2	ES-Y641F	41090938	19139
H3K27me2	ES-Y641F	39997328	23864
H3K27me2	24h diff-WT	78733451	18553
H3K27me2	24h diff-WT	68050715	20331
H3K27me2	MB-C2C12	33856483	7716
H3K27me2	MB-C2C12	27201472	9006
H3K27me1	ES-WT	36870938	18957
H3K27me1	ES-WT	18153597	12144
H3K27me1	ES-Y641F	32691043	4232
H3K27me1	ES-Y641F	22822845	3520
H3K27me1	24h diff-WT	32216315	20901
H3K27me1	24h diff-WT	31933394	23548
H3K27ac	ES-WT	43436134	44845
H3K27ac	ES-WT	41688403	42143
H3K27ac	ES-Y641F	43905499	42202
H3K27ac	ES-Y641F	49031126	33567
H3K27ac	24h diff-WT	37546234	33954
H3K27ac	24h diff-WT	48153389	34338
H3K4me1	ES-Y641F	53543813	72809
H3K4me1	EB8-WT	25589539	42830
H3K4me1	ES-WT	29682375	69649
Ezh2	ES-WT	23447233	14945
Ezh2	ES-WT	69676607	32644
Ezh2	ES-Y641F	19010314	17842
Ezh2	ES-Y641F	93812560	31223

mRNA-seq	# of unique reads	
ES-WT-serum	62795837	
ES-WT-serum	59777949	
ES-WT-serum	90596323	
ES-Y641F-serum	57690908	
ES-Y641F-serum	60917762	
ES-Y641F-serum	69993587	
ES-WT-2i	68140722	
ES-WT-2i	58805718	
ES-WT-2i	54745595	
ES-Y641F-2i	56019864	
ES-Y641F-2i	49711497	
ES-Y641F-2i	34013223	
24h diff-WT	37262614	
24h diff-WT	43448505	
24h diff-WT	49977650	
EB8-WT	50577438	
EB13-WT	38842344	
EB8-Y641F	50019615	
EB13-Y641F	50549941	

Figure S1 (related to Figure 1). H3K27 Methylation Antibody Specificity and Number of Sequencing Reads Across ChIP-seq and mRNA-seq Replicates

- (A) The specificity of antibodies against different degrees of H3K27 methylation was tested via dot-blot assay (left panel) and immunoprecipitated ESC lysates (right panel).
- (B) Number of unique sequencing reads in individual sample replicates of ChIP-seq (left panel) and mRNA-seq (right panel).

Juan et al. Fig. S2

Figure S2 (related to Figure 1). Distinct H3K27 Methylation States Are Enriched at Functionally Defined Genomic Regulatory Regions

- (A) Bar plot showing percentage of H3K27me3, H3K27me2, and H3K27me1 peaks distributed in promoter, intragenic, and intergenic regions.
- (B) Read count per million mapped reads of H3K27me3, H3K27me2, and H3K27me1 from 2Kb upstream of TSS to 2Kb downstream of transcription end site (TES).
- (C) and (D) Averaged normalized tag density profiles of H3K27me3 (C) or H3K27me2 (D) at transcriptional start site (TSS) (blue line) versus prospective DNase hypersensitive sites (DHS) (red line) enhancer regions.
- (E) Percentage of co-occupancy of H3K4me3 and H3K27me3 (left panel), H3K27me2 (middle panel), and H3K27me1(right panel) at TSS regions.
- (F) Percentage of co-occupancy of H3K4me1 and H3K27me3 (left panel), H3K27me2 (middle panel), and H3K27me1(right panel) at intergenic regions.
- (G) through (I) Gene ontology (GO) based on biological processes for genes occupied by H3K27me3 (G), H3K27me2 (H), or H3K27me1 (I) at TSS regions divided by lower expression (RPKM<1) or higher expression (RPKM>1).

Juan et al. Fig. S3

Figure S3 (related to Figure 1). Ezh2 Preferentially Occupies H3K27me3 Regions

- (A) Scatter plots correlation between Ezh2 binding and H3K27me3 occupancy (left panel) and Ezh2 binding and H3K27me2 occupancy (right panel). The R coefficient is determined by Pearson correlation. The p-values are determined by Wilcoxon rank test.
- (B) List of top 25% 6-mer sequences within H3K27me3- and H3K27me2-enriched genomic regions (left panel) and total nucleotide count of these 6-mers (right panel)
- (C) Top 10 DNA-binding motifs within H3K27me3- or H3K27me2-enriched promoter regions.
- (D) Transition of H3K27me1 across H3K4me3^{+/-} promoters and H3K4me1⁺ enhancers in ESCs to different H3K27 states during early ESC differentiation (ESC-24h).
- (E) Box plot of H3K27me1 peak intensities for ±5Kb intergenic genomic regions surrounding the summit of each peak at two different ESC developmental stages. P-values were determined by Student's t-test.

Figure S4 (related to Figure 2). Mass Spectrometry Analysis of H3K27 Methylation in WT and Y641F ESCs and Characterization of Two Additional Y641F ESC Clones

- (A) Levels of H3K27me1 (left panel), H3K27me2 (middle panel), and H3K27me3 (right panel) in WT and Y641F ESCs as determined by LC-MS analysis.
- (B) Western blot analysis of Ezh2, Pou5f1 and H3K27 methylation in two independent Ezh2-Y641F mutant ESCs (Y641F-E13, Y641F-F22).
- (C) Box plot of H3K27me1 peak intensities for genomic regions surrounding (±5Kb) TSS in WT and Y641F ESCs. P-values were determined by Student's t-test.

Juan et al. Fig S5

Figure S5 (related to Figure 5). Y641F ESCs Demonstrate a Propensity for Neural Fate Acquisition upon Differentiation

- (A) Gene Set Enrichment Analysis (GSEA) for neural stem cell (left panel) and mesodermal (right panel) genes among Y641F and WT ESCs.
- (B) RNA expression fold-change of Pou5f1, Sox1, and Pax6 in WT and Y641F ESCs cultured for 2 days in either ESC pluripotency or N2B27 media. *P < 0.05 (n=3).
- (C) Histological H&E staining of WT and Y641F ESCs-derived teratomas documenting ectodermal (left panel), mesodermal (middle panel, stars), and endodermal (right panel) structures. Arrowheads, neural epithelium; stars, skeletal muscle; Arrows: respiratory epithelium.
 (D) RNA expression fold-change of TGF-β1, neural (Sox1, Hes5, Ngn1), mesodermal (T, Myog,

Myh3), and endodermal (*Gata4*, *Gata6*, *Sox17*) transcripts in of WT and Y641F ESCs-derived teratomas.

Expression down >1.5 fold in ESC-24h

Kegg pathway terms	P value
mmu04510:Focal adhesion	2.49E-09
mmu04060:Cytokine-cytokine receptor interaction	8.99E-09
mmu04512:ECM-receptor interaction	4.08E-08
mmu04350:TGF-beta signaling pathway	8.83E-08
mmu05200:Pathways in cancer	5.02E-05

В

Figure S6 (related to Figure 6). TGF-β Pathway Repression Occurs during Early ESC Differentiation

- (A) Pathway KEGG analysis associated with genes with ≥1.5-fold-decrease in RNA expression in ESC-24h compared to WT ESCs.
- (B) RNA expression fold-change (RPKM) from 3 replicates of RNA-seq for TGF-β family members between WT and ESC-24h.

Supplemental Tables

Table S1 Summary of RNA seq and reagents

Table S2 Gene list and GO analysis of H3K27me2 and me3 in the ESC-WT TSS sites (related to Figure S2)

Table S3 Gene list and GO analysis of H3K27me2 and me3 occupied sites in ESC-WT and ESC-24h cells (related to Figure 1)

Table S4 Gene list and GO analysis of sites that reduced me2 in Y641F- increased ac in ESC-24h and sites that increased Y641F and ESC-24h (related to Figure 3 and 4) Table S5 GO and Kegg pathway analysis of WT vs Y641F RNA expression in ES-serum, ES-2i, EB8, and EB13 (related to Figure 5 and 6)

Supplemental Movie 1 (related to Figure 5)